Cluster Randomised Trials in Injury Research: A How-To Guide

Carolyn DiGuiseppi, MD, PhD Denise Kendrick, PhD Carol Coupland, PhD

Workshop Objectives

- Decide who should consent to participation
- Understand how to address refusals and withdrawals
- Address risks for bias unique to CRTs
- Identify an appropriate intracluster correlation coefficient and apply it to sample size estimation
- Recognize need to take clustering into account in analyses
- Justify use of CRT (if time allows)

Workshop Format

- Introduction
- Brief Presentations
 - Consent
 - Design / Bias
 - Sample size and Analysis
 - Justification (if time allows)
- Interactive 'How-To' Sessions choice of two
 - Determining Who/When to Consent
 - Addressing Potential Biases
 - Sample Size Calculation
- Close

Definition of Cluster Randomised Trial (CRT)

- Random allocation of <u>existing</u> groups of individuals to study arms
 - E.g., Family, Classroom, Church, Clinic, Neighborhood

Questions?

Consent Issues in Cluster Randomised Trials

Carolyn DiGuiseppi, MD, PhD Colorado Injury Control Research Center University of Colorado Denver Colorado, USA

Consent

- 'Cluster-cluster trials'
 - the intervention is aimed at clusters
 - E.g., Mass media campaigns or laws
- 'Individual-cluster trials'
 - the intervention is delivered to individuals within clusters
 - E.g., safety counselling for clinic patients

Cluster-Cluster Trials

- If the cluster participates, cluster members MUST participate
 - Only option for individual refusal is to leave the cluster
- Therefore, MUST obtain appropriate 'cluster consent' that represents cluster members' interests

Cluster-Cluster Trials

- Who gives cluster consent?
 - Usually 'guardian' with administrative responsibility for cluster (e.g., headteacher, city council)
 - May establish independent "cluster representation mechanism" (CRM) (individual or body) to safeguard interests of cluster members

Cluster-Cluster Trials

- Role of the Guardian/CRM
 - Weigh risks/benefits for cluster
 - May directly assess member interests (e.g., survey)
 - Provide consent if benefits outweigh risks
 - Remain informed about study progress
 - Withdraw cluster if risk/benefit ratio changes

Cluster-Cluster Trials

- All individual cluster members should (in general) be provided with information about the trial
 - Can give their opinion to the guardian/CRM
 - If possible, opt out of participation or data use

Individual-Cluster Trials

- MUST obtain appropriate 'cluster consent'
- After cluster enrolment, individual members can accept or decline participation
 - E.g., in intervention clinics, individual patients can accept or decline safety counselling
- Therefore, <u>individual</u> consent should also be obtained from all participants
 - Ideally, from all participants prior to cluster randomization

Withdrawals in CRTs

- If cluster guardian wishes to withdraw cluster
 - Guardian may withdraw cluster at any time
 - All members of that cluster are also withdrawn; cannot continue even if they wish to
 - Could transfer to a participating cluster <u>if</u> they have been informed about trial
 - In general, cluster members should be informed of withdrawal from study

Withdrawals from CRTs

- If individual cluster member wishes to withdraw
 - Cluster-cluster trials
 - Cannot withdraw (except transfer out of cluster)
 - Should inform guardian of desire to withdraw and reasons (e.g., adverse effects)
 - Guardian may then choose to withdraw entire cluster
 - Individual-cluster trials
 - Individual may withdraw anytime
 - Researchers should inform guardian of withdrawals and the reasons (typically in aggregate)
 - Guardian may then choose to withdraw entire cluster

Interactive 'How-To' Session: Determining Who & When to Consent

- Consenting cluster 'guardian'
- Assessing cluster members' interests
- Consenting individual cluster members
- · Addressing refusals and withdrawals

Questions?

Study Design Issues

Denise Kendrick
University of Nottingham
Nottingham, UK

Plan

- What is bias?
- Types of bias particularly relevant to C-RCTs
- How can bias be avoided or minimised?
- Practical: what we will cover

What is bias?

- "A bias is a systematic error, or deviation from the truth, in results or inferences" www.cochranehandbook.org
- Systematic distortion of the estimated intervention effect away from the "truth", caused by inadequacies in the design, conduct, or analysis of a trial www.consort-statement.org
- Systematic = consistently "wrong" in one or other direction

Specific bias issues in C-RCTs					
Туре	How it may occur	Strategies to prevent bias			
Selection bias Differences between baseline characteristics of groups	-Simple randomisation of small numbers of clusters - "chance" imbalance between groups -Cluster members know allocation at time of recruitment - post randomisation recruitment bias	-Stratified randomisation, minimisation or matched-pair design -Randomise <i>ofter</i> all clusters & members recruited -Recruit & consent blind to allocation -Use design without cluster member consent			
Attrition bias Differences between groups in withdrawals	-Higher dropout in control clusters/members - not receiving "favoured" intervention or receiving less attention - Higher dropout in intervention clusters/members - study demands	-Waiting list controls -Alternative "active" control condition -Clarity of expectations at cluster/member level -No withdrawal option e.g. geographic units in consenting community Intention to treat analysis			

Post-randomisation recruitment bias

Plans to use walker	Intervention group	Control group
Yes	25%	37%
No	49%	37%
Unsure	26%	26%

Intervention group less likely to plan to use a baby walker– likely to lead to <u>overestimation</u> of treatment effect

Promoting child safety in primary care: a cluster randomised controlled trial to reduce baby walker use. Kendrick D et al, BJGP 2005; 55:582-588

Cycle helmet promotion trial: 28 eligible schools randomised 14 brief intervention schools 100% completed baseline assessment 100% completed baseline assessment 100% completed baseline assessment 100% completed baseline assessment 98% completed follow up assessment 77% completed follow up assessment Possibly less interested children/teachers did not respond in brief intervention group — may lead to underestimation of treatment effect Kendrick D, Royal S. Cycle helmet ownership and use; a cluster randomised controlled trial in primary school children in deprived areas. Arch Dis Child 2004; 89:330-335.

Specific bias issues in C-RCTs

Туре	How it may occur	Strategies to prevent bias
Detection bias Differences between groups in how outcomes are determined	-Outcome assessors & participants not blind to allocation so outcomes ascertained differentially between groups	-Blind clusters +/- members to allocation -Blind outcome assessors to allocation -Use objectively measured outcomes -Use routinely collected data
Dilution bias Differences between groups in receipt of allocated intervention	-Intervention not received by members due to refusal post randomisation -Migration out of clusters -Control group may receive intervention	-Exclude refusers/consent before randomisation -Rigorous methods of follow up -Geographic separation of groups -Inflate sample size -Measure compliance at cluster & membi-

Self reported outcomes	Intervention group	Control group	Effect size (95% CI)
Involved in child injury prevention	38%	25%	1.5 (1.1, 2.1)
Believes could take action to help prevent child injuries in their ward	73%	53%	1.4 (1.2, 1.6)
Objective outcomes			
Percentage of kilometres of road traffic calmed per ward (median, IQR)	4.9 (1.8 to 13.9)	4.6 (1.1 to 8.6)	0.1 (-0.1 to 0.2)

Interactive 'How-To' Session: Identifying bias and how to avoid it Review extracts from published injury prevention C-

- RCTs
- Identify types of possible bias
- Determine how to avoid or minimise such bias

Questions?

Outline

- Effects of clustering
- Sample size calculations
- Analysis of cluster randomised trials
- Practical working out some sample sizes

Clustering effects In cluster randomised trials participants in the same cluster tend to be more alike than participants in different clusters.

Clustering effects

- Members of same cluster tend to respond to interventions in ways more similar to others in same cluster than to members of different clusters, because:
 - People who choose cluster are more similar to each other (e.g., school, church)
- Common exposures (e.g., busy street)
- Interact with each other (e.g., share information)
- Thus, participant outcomes are usually correlated within clusters

This means usual methods of sample size calculation and analysis are not valid!

31

Intraclass correlation coefficients

- The intraclass correlation coefficient (ICC) measures similarity of people in the same cluster
- It is the proportion of the total variation in the outcome of interest that occurs between clusters
- Usually has positive values, with a maximum of 1
- If ICC = 0 → no clustering effects
- If ICC = 1 → all people in the same cluster have the same value of the outcome

37

ICC values

- ICC values are generally below 0.2 in injury prevention studies
- See Handout for examples
- Studies of knowledge and behaviour in schools have reported higher ICCs
- ICC values are usually lower for larger clusters (e.g. geographical areas) and higher for smaller ones (e.g. families)

33

Sample size calculation

- > Sample size needs to account for clustering
- First calculate sample size as if study was individually randomised trial (N_{IRT})
- Then modify to allow for clustering, using an appropriate ICC value to calculate sample size for a cluster randomised trial (N_{CRT})
- $N_{CRT} = N_{IRT} \times (1 + (cluster size 1) \times ICC)$

DESIGN EFFECT

34

Sample size – example Intervention to reduce baby walker use

intervention to reduce baby v

> Individually randomised trial:

To detect 10% reduction in use, from 50%, with 80% power and 5% significance, 388 mothers are needed per study arm

Cluster randomised trial:

Clustered by general practice.

Assume ICC = 0.017, average cluster size=23

i.e. now 532 mothers are needed per study arm

So 532/23 = 23 practices are needed per study arm.

(Kendrick et al. Br J Gen Pract 2005;55:582-8)

Analysis

- Analysis also needs to account for clustering, otherwise significance levels are likely to be too low and confidence intervals too narrow.
- > Two main approaches -
 - Cluster level analyses
 - Individual level analyses which account for clustering

36

Analysis

Cluster level analysis:

Combine/aggregate data for each cluster and compare treatment groups, e.g., Kendrick et al (1999) calculated injury rate in each practice and compared treatment groups with a t-test

Individual level analysis:

Use multi-level modelling, or generalised estimating equations.

Conclusions

- Cluster randomisation affects sample size calculations and analysis of a trial
- Sample sizes can be much larger than for individually randomised trials
- Analyses which fail to account for clustering can give misleading results
- These trials should be reported carefully (see CONSORT guidelines on cluster trials).

3.8

Justification for Using CRTs

Carolyn DiGuiseppi, MD, PhD Colorado Injury Control Research Center University of Colorado Denver Colorado, USA

Why is Justification Necessary?

- CRTs are more complex to:
 - Consent
 - Design
 - Analyze
- Therefore, use of CRT design must be justified

Justification

- Scientific justification
- · Logistical justification

Scientific Justification

- Potential contamination between groups
 - Intervention and control subjects in same social unit may share information or resources
 - E.g., in classroom, control child learns conflict resolution skills from a child trained in these skills as part of a violence prevention intervention
- Cluster-level intervention
 - Intervention delivered to and affects groups of individuals
 - E.g., Media campaigns, organizational changes, laws

Logistical Justification

- Efficiency and cost
 - Concentrate activities in fewer locations, train fewer people to deliver intervention, access subjects more easily. E.g.:
 Canvassing homes to deliver intervention
 Training teachers to deliver violence prevention curriculum to students
- Access to routinely collected data
 - Outcome data for entire social unit may be routinely collected; protects confidentiality
 E.g., Nursing home will release monthly report on aggregate falls, but not individually identifiable falls data

Questions?